O.P.Code:23HS0834

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Regular & Supplementary Examinations November-2025 NUMERICAL METHODS & TRANSFORM TECHNIQUES

(Mechanical Engineering)								
Tin	ıe:	3 Hours	Max.	Mark	ks: 70			
		$\frac{PART-A}{(Answer all the Questions 10 x 2 = 20 Marks)}$						
1	9	Find the root of the equation $x^2 - 5 = 0$ by using Bisection method.	CO1	L1	2M			
1		Solve by Jacoby method [Only two iterations]	CO1	L3	2M			
	U	x + y = 3; 3x - 2y = 4.	001		2171			
	c	Write Newton's forward interpolation formulae.	CO ₂	L1	2M			
	d	Write the normal equations used in fitting a second degree polynomial	CO ₂	L1	2M			
	e	Write Taylor's formula for $y(x_1)$ to solve $y' = f(x, y)$ with $y(x_0) =$	CO ₃	L1	2M			
		y ₀ .	COA	т 1	234			
	f	Write the formula for Runge – Kutta method of fourth order.	CO4 CO5	L1 L1	2M 2M			
	g h	What is the Linear Property of Laplace Transform. State Convolution Theorem.	CO5	L1	2M			
	i	Write the conditions for Fourier Series Expansion.	CO6	L1	2M			
	i	Write the formula for Fourier cosine transform.	CO6	L1	2M			
	J	PART-B						
		(Answer all Five Units $5 \times 10 = 50$ Marks)						
		UNIT-I						
2	a	Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.	CO ₁	L1	5M			
		Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection	CO ₁	L1	5M			
		method.						
		OR						
3		Solve the following system of equations by Gauss-Siedel method	CO ₁	L3	10 M			
		4x + 2y + z = 14; $x + 5y - z = 10$; $x + y + 8z = 20$.						
		UNIT-II	~~~					
4	a	Using Newton's forward interpolation formula and the given table of values	CO2	L3	5M			
		x 1 1.4 1.8 2.2						
		f(x) 3.49 4.82 5.96 6.5						
		Obtain the value of $f(x)$ when $x=1.6$.						
	b	Applying Newton's forward interpolation formula, compute the value of	CO ₂	L3	5M			
		$\sqrt{5.5}$ given that $\sqrt{5} = 2.236$; $\sqrt{6} = 2.449$; $\sqrt{7} = 2.646$; $\sqrt{8} = 2.449$						
		2.828 .						
		OR						
5		Find the curve of best fit of the type $y = ae^{bx}$ to the following data by	CO ₂	L1	10M			
		method of least squares						
		X 1 5 7 9 12						
		Y 10 15 12 15 21						
		UNIT-III						
4			CO3	T 2	10M			
6		Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that $y^1 = y^2 + x$ and $y(0) = 1$	003	LJ	10141			
		\mathbf{OR}						
7		Using Runge – Kutta method of fourth order, find $y(0.1)$ and $y(0.2)$	CO4	L3	10M			
•		given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.						
		$\frac{dx}{dx} = x + y, y(0) = 1.$						

		UNIT-IV			
8	a	Find the Laplace transform of	CO5	L3	6M
		$f(t) = e^{3t} - 2e^{-2t} + \sin 2t + \cos 3t + \sinh 3t - 2\cosh 4t + 9.$			
	b	Find the Laplace transform of $f(t) = \cosh at \sin bt$	CO ₅	L3	4M
		OR			
9	a	Using Convolution theorem, Find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$	CO5	L3	5M
	b	Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$	CO5	L3	5M
		UNIT-V			
10		Obtain the Fourier Berrey expansion of five the series	CO ₆	L3	10 M
		OR			
11	a	Prove that $F_c\{x x(x)\} - \frac{1}{dn}[F_s(p)]$	CO6	L5	5M
	b	Prove that $F_s\{x f(x)\} = -\frac{d}{dp}[F_c(p)]$	CO6	L5	5M
		*** END ***			

